259 | 3 | 27 |
下载次数 | 被引频次 | 阅读次数 |
目的基于临床常规指标建立妊娠糖尿病(GDM)风险评估模型,以便更加有效地防治GDM。方法前瞻性纳入2016年12月-2018年8月在禹州市人民医院建卡的1765例孕妇,收集年龄、孕前体重指数(BMI)、孕期增重、产次、不良孕产史、糖尿病(DM)家族史、血脂和孕早期空腹血糖(FPG)水平等资料,以是否发生GDM分为GDM组(157例)和非GDM组(1608例),行单因素和多因素分析,建立风险预测模型。结果①单因素分析显示:GDM组和非GDM组在年龄、孕前BMI、孕期增重、产次、DM家族史构成比和三酰甘油(TG)、孕早期FPG水平上存在差异(P <0. 05)。②多因素Logistic回归分析显示:年龄、孕前体重、孕期增重、TG和孕早期FPG是预测GDM的独立指标(P <0. 05)。预测模型:PGDM=1/{1+EXP[-(-8. 892+0. 203×年龄(25~34岁)+1. 085×年龄≥35岁-0. 810×孕前偏瘦+0. 992×孕前超重+1. 938×孕前肥胖-0. 740×孕期增重偏低+1. 169×孕期增重超标+0. 643×TG+0. 906×FPG)]}。③模型预测GDM的受试者工作特征曲线下面积(AUC)=0. 824(95%CI:0. 793~0. 856),与随机面积0. 5比较,P=0. 000,以预报概率0. 532(约登指数最大)作为切割点,模型预测GDM的灵敏度、特异度和一致率分别为0. 733、0. 796和79. 04%;当预报概率为0. 5时,灵敏度、特异度和一致率分别为0. 814、0. 656和67. 08%。结论以母体年龄、孕前BMI、孕期增重、TG和孕早期FPG建立的风险预测模型可为GDM的早期预警提供参考。
Abstract:Objective To establish risk assessment model for gestational diabetes mellitus( GDM) based on conventional clinical index,in order to effectively prevent and control GDM. Methods This prospective study was conducted in 1765 pregnant woman who were registered in Yuzhou People's Hospital from December 2016 to August 2018. The age,pre-pregnancy body mass index( BMI),gestational weight gain,parity,bad history of pregnancy and childbirth,family history of diabetes,plasma lipids,fasting plasma glucose( FPG) of the participants during the first trimester were collected. According to whether or not GDM,the pregnant women were divided into GDM group( n = 157) and non-GDM group( n = 1608). The above-mentioned index were compared between two groups with univariate and multivariate analyses. A risk prediction model of GDM was established. Results ① Univariate analysis indicated that the age,pre-pregnancy BMI,gestational weight gain,parity,family history of diabetes,triglyceride( TG),FPG during the first trimester had statistical difference between GDM group and non-GDM group. ② Multiple logistic regression analysis showed that age,prepregnancy BMI,gestational weight gain,TG,FPG during the first trimester were the independent prediction index of GDM( P < 0. 05).Prediction model was as follows: PGDM= 1/{ 1 + EXP[-(-8. 892 + 0. 203 × gae( 25-34 years) + 1. 085 × age≥35 years-0. 810 ×pre-pregnancy lean + 0. 992 × pre-pregnancy over weight + 1. 938 × pre-pregnancy obesity-0. 740 × insufficient gestational weight gain +1. 169 × excessive gestational weight gain + 0. 643 × TG + 0. 906 × FPG) ]} . ③ The area under the receiver operating characteristic( ROC) curve of mode which were used to predict GDM was 0. 824( 95% CI: 0. 793-0. 856). Compared with the random area( 0. 5),there was statistical difference( P = 0. 000). The cut off point for prediction probability was 0. 532( Youden's index was the biggest),and the sensibility,specificity and accuracy of mode for GDM was 0. 733,0. 796 and 79. 04%,respectively. When the cut off point was0. 5,the sensibility,specificity and accuracy was 0. 814,0. 656 and 67. 08%,respectively. Conclusion The risk prediction model based on the factors such as age,pre-pregnancy BMI,gestational weight gain,TG,and FPG during the first trimester can provide reference for early warning of GDM.
[1] Moses RG. GDM:implications of an increased frequency with IADPSG criteria[J]. Diabetes Care,2012,35(3):461-462.
[2]杨晓燕,任楠楠,张文香,等.妊娠糖尿病发病率及其相关危险因素分析[J].陕西医学杂志,2018,47(5):577-579,589.
[3]苏日娜,朱微微,魏玉梅,等.北京地区妊娠糖尿病发病情况及妊娠结局的回顾性调查[J].中华围产医学杂志,2016,19(5):330-335.
[4] Noctor E,Dunne FP. Type 2 diabetes after gestational diabetes:the influence of changing diagnostic criteria[J].World J Diabetes,2015,6(2):234-244.
[5]中华医学会妇产科学分会产科学组,中华医学会围产医学分会妊娠合并糖尿病协作组.妊娠合并糖尿病诊治指南(2014)[J].中华妇产科杂志,2014,49(8):561-569.
[6] Weinert LS. International Association of Diabetes and Pregnancy Study Groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy:comment to the International Association of Diabetes and Pregnancy Study Groups Consensus Panel[J]. Diabetes Care,2010,33(7):e97.
[7] National Health and family Planning Commission of the People's Republic of China. Health industry standard:Criteria of weight for adults[M]. Beijing:Chinese Standards Press,2013:15.
[8]吕俊菊,朱海燕,江华.孕期周体重的百分位曲线图的制备及孕期适宜增重范围的探讨[J].中国妇幼保健,2014,29(27):4403-4406.
[9] Stamnes Koepp UM,Frost Andersen L,Dahl-Joergensen K,et al. Maternal pre-pregnant body mass index,maternal weight change and offspring birthweight[J]. Acta Obstet Gynecol Scand,2012,91(2):243-249.
[10]赵建峰,张华新,宋玉林.妊娠期糖尿病与胰岛素抵抗关系的临床研究[J].生殖医学杂志,2015,24(2):120-124.
[11]王莉华,刘纯,李启富,等.妊娠中期甲状腺功能状态与妊娠糖尿病的关系[J].上海交通大学学报(医学版),2015,35(8):1160-1164.
[12]王凯航,向菲.血清25-羟维生素D与妊娠糖尿病相关性分析[J].重庆医学,2015,44(17):2362-2364.
[13]孙桂霞,王宁,张红霞,等.SH2B1基因多态性与妊娠糖尿病的相关性研究[J].中国现代医学杂志,2017,27(12):55-59.
[14]邓丽娜,杨宏毅,孙立明,等.妊娠糖尿病与孕期体重增长CDKN2A/2B基因多态性相关性研究[J].中国地方病防治杂志,2016,31(3):298-299.
[15] Hanprasertpong T,Kor-Anantakul O,Suwanrath C,et al.Subsequent GDM prediction in advanced maternal age using amniotic fluid glucose concentration during second trimester genetic amniocentesis[J]. J Obstet Gynaecol,2016,36(6):744-747.
[16]孟茜,林鹏.二胎政策开放与未开放高危妊娠妇女分布人群差异性调查[J].中国妇幼保健,2016,31(20):4266-4268.
[17]徐菁.妊娠期糖尿病危险因素分析及患者血清RBP4、leptin、Nesfatio-1水平变化[J].中国实验诊断学,2017,21(3):448-451.
[18]徐蓉,陶静,胡鹏,等.妊娠糖尿病发病现状及危险因素分析[J].护理研究,2016,30(1):177-179.
[19]曾源娇.妊娠期糖尿病危险因素分析[J].包头医学院学报,2015,31(12):6-7.
[20] Law KP,Zhang H. The pathogenesis and pathophysiology of GDM:Deductions from a three-part longitudinal metabolomics study in China[J]. Clin Chim Acta,2017,468:60-70.
[21]刘倩倩,李婷,苏秀娟.妊娠早期母体一般特征联合多项指标预测妊娠期糖尿病发生的可行性[J].现代妇产科进展,2017,26(6):418-421,425.
[22]毕研霞,洪忠新,丁冰杰.妊娠糖尿病患者孕前体质指数与血糖及孕期膳食营养的关系[J].中国全科医学,2015,18(14):1624-1628.
[23]王敬民,石芳鑫,周娜娜,等.502例单胎足月巨大儿的发生现状及危险因素分析[J].医学与哲学,2017,38(12B):38-41.
[24] Baci Y,Ustuner I,Keskin HL,et al. Effect of maternal obesity and weight gain on GDM[J]. Gynecol Endocrinol,2013,29(2):133-136.
[25]李利平,陈志珉,王颖芳,等.妊娠糖尿病脂代谢紊乱特点分析[J].中国现代医学杂志,2015,25(22):109-112.
[26]夏莉,胡红琳,王长江,等.妊娠糖尿病患者血脂水平与胰岛素抵抗相关性分析[J].安徽医科大学学报,2017,52(5):749-751.
[27]王晓梅,王晓伶,卜淑娜.高龄孕产妇孕早期妊娠糖尿病的危险因素分析[J].中国糖尿病杂志,2018,26(6):455-458.
基本信息:
DOI:10.19757/j.cnki.issn1674-7763.2020.03.003
中图分类号:R714.256
引用信息:
[1]方红霞,魏金彩,李红杰等.妊娠糖尿病预测模型的建立与评价[J].中国妇幼卫生杂志,2020,11(03):13-18.DOI:10.19757/j.cnki.issn1674-7763.2020.03.003.
基金信息: